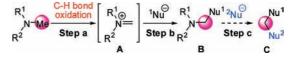
Iron-Catalyzed Selective Oxidation of N-Methyl Amines: Highly Efficient Synthesis of Methylene-Bridged bis-1,3-Dicarbonyl Compounds

ORGANIC LETTERS

2009 Vol. 11, No. 18 4176-4179

Haijun Li, Zhiheng He, Xingwei Guo, Wenjuan Li, Xuhui Zhao, and Zhiping Li*

Department of Chemistry, Renmin University of China, Beijing 100872, China zhipingli@ruc.edu.cn


Received July 30, 2009

ABSTRACT

Methylene-bridged bis-1,3-dicarbonyl derivatives were synthesized efficiently by iron-catalyzed oxidative reactions of 1,3-dicarbonyl compounds and *N,N*-dimethylaniline. Bipyrazoles and substituted 1,4-dihydropyridine were obtained by the reactions of bis-1,3-dicarbonyl compounds with hydrazines and ammonium acetate, respectively.

The oxidation of amines, ^{1,2} especially *N*-methyl amines, ³ is an important process and has attracted much interest in chemistry and biochemistry. Catalytic functionalization of a C-H bond adjacent to a nitrogen atom presents a direct and efficient method of synthesizing amine derivatives. ⁴ A general mechanism for the oxidative functionalization of *N*-methyl amine is shown in Scheme 1. ⁵ An iminium species **A** is generated by selective oxidation C-H bond adjacent to nitrogen (Step a). Subsequently, the nucleophilic addition reaction affords the oxidative Mannich-type products **B** in

Scheme 1. Direct Oxidative Functionalization of *N*-Methyl Amines

(1) (a) Cytochrome P-450, Structure, Mechanism, and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995. (b) Gorrod, J. W. Biological Oxidation of Nitrogen; Elsevier/North Holland Biomedical Press: New York, 1978.

(2) (a) Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. **2008**, *37*, 1490. (b) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 2443.

the presence of a nucleophile (Step b), which were generally synthesized by the Mannich reaction or the aza-Michael addition reaction. However, selective double alkylation of *N*-methyl amines is virtually unknown (Step c).⁶

The application of readily available and nontoxic iron catalysts instead of expensive and sensitive catalysts is highly attractive for chemical synthesis. Iron-catalyzed oxidation of *N*-methyl amines is of considerable interest in synthetic chemistry. In conjunction with our recent result on selective oxidation of C—H bonds adjacent to heteroatoms, we herein report a novel and efficient method of synthesizing

^{(3) (}a) Yi, C.; Yang, C.-G.; He, C. Acc. Chem. Res. **2009**, 42, 519. (b) Chiavarino, B.; Cipollini, R.; Crestoni, M. E.; Fornarini, S.; Lanucara, F.; Lapi, A. J. Am. Chem. Soc. **2008**, 130, 3208. (c) Baciocchi, E.; Lapi, A. Tetrahedron Lett. **1999**, 40, 5425.

⁽⁴⁾ For representative reviews, see: (a) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069. (b) Godula, K.; Sames, D. Science 2006, 312, 67. (c) Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2006, 45, 1683.
(5) For representative reviews, see: (a) Li, C.-J. Acc. Chem. Res. 2009,

⁽⁵⁾ For representative reviews, see: (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (b) Li, C.-J.; Li., Z. Pure Appl. Chem. 2006, 78, 935. (c) Murahashi, S.-I.; Takaya, H. Acc. Chem. Res. 2000, 33, 225. (d) Murahashi, S.-I. Pure Appl. Chem. 1992, 64, 403.

^{(6) (}a) Murata, S.; Miura, M.; Nomura, M. J. Org. Chem. 1989, 54, 4700. (b) Murata, S.; Miura, M.; Nomura, M. J. Chem. Soc., Chem. Commun. 1989, 116.

bis-1,3-dicarbonyl derivatives¹¹ by the iron-catalyzed reactions of 1,3-dicarbonyl compounds with *N*-methyl amines under mild reaction conditions.

The reaction of ethyl 3-oxo-3-phenylpropanoate $\mathbf{1a}$ and N,N-dimethyl aniline $\mathbf{2a}$ was investigated to examine the suitable reaction conditions (Table 1). FeCl₃, Fe(OAc)₂, and

Table 1. Optimization of the Reaction Conditions

entry	1a (mmol)	2a (mmol)	[Fe] $(\%)^a$	oxidant $(mmol)^b$	yield (%) ^a
1	0.5	2.0	FeCl ₃ (10)	$(t\text{-BuO})_2 (1.5)$	5
2	0.5	2.0	$Fe(OAc)_2$ (10)	$(t\text{-BuO})_2 (1.5)$	6
3	0.5	2.0	$FeBr_2$ (10)	$(t\text{-BuO})_2 (1.5)$	27
4	0.5	2.0	$FeCl_2$ (10)	$(t\text{-BuO})_2 (1.5)$	52
5	0.5	2.0	$Fe_2(CO)_9(5)$	$(t\text{-BuO})_2 (1.5)$	39
6	0.5	2.0	$Fe_2(CO)_9(5)$	t-BuOOH (1.5)	51
7	1.0	1.0	$Fe_2(CO)_9 (2.5)$	t-BuOOH (2.0)	75
8	1.0	1.0	$Fe_2(CO)_9\;(2.5)$	$t\text{-BuOOH}\ (2.0)$	86^c

^a Based on 1a. ^b t-BuOOH (5.5 M in decane). ^c One hour.

FeBr₂ were ineffective catalysts for the formation of $\bf 3a$ (entries 1–3). The desired product $\bf 3a$ was obtained in 52% yield when FeCl₂ was used as a catalyst (entry 4). Although Fe₂(CO)₉ led to 39% yield of $\bf 3a$ at 25 °C,¹² a 51% yield of $\bf 3a$ was achieved when *tert*-butyl hydrogenperoxide (TBHP) was used instead of di-*tert*-butyl peroxide (entries 5 and 6). Importantly, up to 75% yield of $\bf 3a$ was obtained using 2.5 mol % of Fe₂(CO)₉ and 2.0 equivalents of TBHP (entry 7). The yield of $\bf 3a$ was further improved to 86% when the

reaction time was one hour (entry 8). Some uncharacterized byproducts were observed with a prolonged reaction time. These results demonstrated that low loading catalyst and short reaction time are essential for the high selectivity of the present transformation.

Other *N*-methyl amines were also investigated under the optimized reaction conditions (Table 2). The reaction of **1a**

Table 2. Reactions of 1a with Other N-Methyl Amines

entry	2	isolated yield (%)	
1	Me——N	85	
2	Br N Me	61	
3	NC-__N	14	
4	Ph N Me	54	
5	N-Me	25	

with 4-methyl *N*,*N*-dimethyl aniline affords a comparable yield of the desired product **3a** (Table 2, entry 1 vs Table 1, entry 8), whereas electron-withdrawing substituted aniline gave **3a** in low yields (entries 2 and 3). These results were consisted with the oxidative activities of 4-*X*-*N*,*N*-dimethylanilines.¹³ Notably, aliphatic tertiary amines were not effective methylenic sources (entries 4 and 5).

Subsequently, the scope of the present transformation was examined using N,N-dimethyl aniline 2a as a methylenic unit source. Various 1,3-dicarbonyl compounds were transformed into the corresponding methylene-bridged bis-1,3-dicarbonyl products 3a with good to excellent yields under the optimized conditions (Scheme 2). Not only β -ketone esters but also β -ketone amide and 1,3-diketones reacted smoothly with N,N-dimethyl aniline 2a. No obvious electronic effect was observed with 1 bearing an aromatic ring. However, the desired methylene-bridged bis-1,3-dicarbonyl products were obtained in low yields (ca.10–30%) when pentane-2,4-dione and ethyl 3-oxobutanoate were used. We postulated that a stabilized intermediates introduced by aromatic substituent improves the efficiency of the present transformation. ¹⁴ Two diastereomers were obtained in ratios between 0.7 and 1. ¹⁵

Pyrazoles are an important class of heteroaromatic ring systems and exist in nature products, medical molecules, and metallic ligands.¹⁶ With the methylene-bridged bis-1,3-

Org. Lett., Vol. 11, No. 18, 2009

⁽⁷⁾ For representative reviews, see: (a) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500. (b) Correa, A.; Mancheño, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. (c) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 3317. (d) Fürstner, A.; Martin, R. Chem. Lett. 2005, 34, 624. (e) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.

⁽⁸⁾ Iron-catalyzed oxidation of N-methyl amines, see: Volla, C. M. R.; Vogel, P. Org. Lett. 2009, 11, 1701.

⁽⁹⁾ Other metal-catalyzed reactions, see: [Ru]: (a) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005. (b) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005, 44, 6931. (c) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312[Cu]: (d) Huang, L.; Zhang, X.; Zhang, Y. Org. Lett. 2009, 11, 3730. (e) Chu, L.; Zhang, X.; Qing, F.-L. Org. Lett. 2009, 11, 2197. (f) Xu, X.; Li, X. Org. Lett. 2009, 11, 1027. (g) Shen, Y.; Li, M.; Wang, S.; Zhan, T.; Tan, Z.; Guo, C.-C. Chem. Commun. 2009, 953. (h) Basle, O.; Li, C.-J. Green Chem. 2007, 9, 1047. (i) Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2007, 9, 3813. (j) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810[Rh]: (k) Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am. Chem. Soc. 2006, 128, 5648.

^{(10) (}a) Li, Z.; Yu, R.; Li, H. Angew. Chem., Int. Ed. **2008**, 47, 7497. (b) Li, Z.; Li, H.; Guo, X.; Cao, L.; Yu, R.; Li, H.; Pan, S. Org. Lett. **2008**, 10, 803.

^{(11) (}a) Karvembu, R.; Natarajan, K. *Polyhedron* **2002**, *21*, 219. (b) Martin, D. F.; Shamma, M.; Fernelius, W. C. *J. Am. Chem. Soc.* **1958**, *80*, 5851.

⁽¹²⁾ The oxidative coupling product **9** was obtained as the major product in 53% yield and bis-1,3-dicarbonyl compound **4a** was only isolated in trace amount at 80 °C; see ref 10.

^{(13) (}a) References 8 and 9. (b) Baciocchi, E.; Lanzalunga, O.; Lapi, A.; Manduchi, L. J. Am. Chem. Soc. 1998, 120, 5783.

Scheme 2. Some Representative Results

dicarbonyl compounds in hands, bipyrazoles were synthesized efficiently by the reported method (Scheme 3).¹⁷ In

Scheme 3. Representative Drivatization of 3

addition, the substituted 1,4-dihydropyridine 8 was obtained in moderate yield by the reaction of 3a and ammonium

acetate **7**. The applications of the bis-1,3-dicarbonyl compounds **1** and their derivatives in coordination chemistry and synthetic chemistry are under investigated in this lab.

Interestingly, the oxidative coupling product **9** was obtained in 47% yield together with 37% yield of **3a** in the presence of 10 equiv of **2a** (eq 1). Subsequently, **9** was subjected to the standard reaction conditions and **3a** was obtained with 91% yield (eq 2). The results suggested that the oxidative-coupling product **9** is most likely a possible intermediate for the present transformation. It was further confirmed by the formation of the crossed product **3m** under the standard reaction conditions (eq 3).

Based on these results, a plausible scenario of the formation of the methylene-bridged bis-1,3-dicarbonyl product 3 is illustrated in Scheme 4. The reaction of 1 and 2

Scheme 4. Possible Pathways for the Formation of 3

affords the oxidative coupling product **9**. **3** is formed by either nucleophilic substitution reaction or the tandem reaction of Cope elimination and Michael addition via a intermediate **10** in the presence of iron catalyst and oxidant. However, the reaction of 1,3-dicarbonyl compounds **1** with formaldehyde, which was generated *in situ* via iron-catalyzed

4178 Org. Lett., Vol. 11, No. 18, 2009

⁽¹⁴⁾ Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505.(15) The ratios of diastereomers were given in the Supporting Information.

^{(16) (}a) Elguero, J. Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 5. (b) Steel, P. J. Coord. Chem. Rev. 1990, 106, 227.

⁽¹⁷⁾ Heller, S. T.; Natarajan, S. R. Org. Lett. 2006, 8, 2675.

oxidative *N*-demethylation,¹⁸ would also afford the methylene-bridged bis-1,3-dicarbonyl product **3**.¹⁹ Therefore, this alternative pathway could not be fully excluded at this stage.

In summary, we demonstrated a novel and efficient method of synthesizing methylene-bridged bis-1,3-dicarbonyl derivatives via iron-catalyzed oxidation of *N*-methyl amines. Bipyrazoles and substituted 1,4-dihydropyridine were obtained by the reaction of methylene-bridged bis-1,3-dicarbonyl compounds with hydrazines and ammonium acetate.

The mild reaction conditions and the high efficiency of the oxidative functionalization make the present transformation attractive for future applications.

Acknowledgment. We thank the program for New Century Excellent Talents in University and the NSFC (20602038 and 20832002) for the financial support. We are indebted to Prof. Zhenfeng Xi, Peking University.

Supporting Information Available: Representative experimental procedure, characterization of all new compounds, Nash test and ¹H NMR and ¹³C NMR data. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁸⁾ The formation of formaldehyde in the present transformation was proven by Nash test; the detailed experiments of Nash test were given in the Supporting Information.

^{(19) (}a) Nakanishi, M.; Bolm, C. *Adv. Synth. Catal.* **2007**, *349*, 861. (b) Lecomte, V.; Bolm, C. *Adv. Synth. Catal.* **2005**, *347*, 1666. (c) Wilson, B. D. *J. Org. Chem.* **1963**, *28*, 314.